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Abstract

In this paper, a Baycsian procedure to estimate the 3 parameter normal ogive model

and a generalization to a model with multidimensional ability parameters will be discussed. The

procedure is a generalization of a procedure by Albert (1992) for estimating the 2 parameter

normal ogive model. The procedure will support multiple samples from multiple populations

and restrictions on the factor matrix for testing specific hypotheses about the ability structure.

The technique is illustrated using simulated and real data.

Key words: Bayes estimates, Full Information Factor Analysis, Gibbs sampler, item

response theory, Markov chain Monte Carlo, multidimensional item response theory, normal

ogive model.

Introduction

Item response theory (IRT) models are stochastic models for the responses of persons

to items, where the influence of items and persons on the responses are modeled by disjunct

sets of parameters. In the framework of educational and psychological measurement, the person

parameter can usually be labeled ability, and in many instances it suffices to assume that ability

is unidimensional. However, in other instances it may be a priori clear that multiple skills or

abilities are involved in producing the manifest responses, or the dimensionality of the ability

structure might not be clear at all. In these situations, multidimensional IRT models can serve

confirmatory and explorative purposes. The focus of this paper will be dichotomously scored

items. Multidimensional IRT models for dichotomously scored items were first presented by

Lord and Novick (1968) and McDonald (1967). These authors use a normal ogive to describe

the probability of a correct response. McDonald (1967,1997) developed an estimation procedure

based on an expression for the association between pairs of items and derived from a polynomial

expansion of the normal ogive. The procedure is implemented in NOHARM (Normal-Ogive

Harmonic Analysis Robust Method, Fraser, 1988). An alternative using all information in

the data, and therefore labeled "Full Information Factor Analysis" was developed by Bock,

Gibbons, and Muraki, (1988). This approach is a generalization of the marginal maximum

likelihood (MML) and Bayes model egtimation procedures for unidimensional IRT models

(see, Bock & Aitkin, 1981, Mislevy, 1986), and has been implemented in TESTFACT (Wilson,

Wood, and Gibbons, 1991). A comparable model using a logistic rather than a normal-ogive

representation has been studied by Reckase (1985, 1997) and Ackerman (1996a and 1996b).
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MCMC estimation MIRT 3

The aim of the present paper is to present a Bayesian approach to estimating normal

ogive multidimensional IRT models. The method is a generalization of the Bayesian approach

to estimating the two-parameter normal ogive model (2PNO) by Albert (1992). The method will

provide marginal posterior density estimates for any parameter of interest. Besides that these

estimates can be used to judge the accuracy of normal approximations of the standard error of

MML estimates, the method also has the advantage that restrictions on the dimensionality in the

MIAL framework emanating from using Gaussian quadrature do not apply here (Bock, Gibbons,

& Muraki, 1988).

This paper is organized as follows. In the next section the procedure will be developed

for the unidimensional 3-PL normal ogive model (3PNO). In the third section this procedure will

be generalized to Q multidimensional normal ogive models, both with and without guessing

parameters. The former model will be labeled (Q + 2)PN 0 , the latter (Q +1)PNO. The procedure

will be defined in such a way that generalization to multiple samples from multiple populations

is straightforward. In the fifth section, it will be shown how restrictions can be imposed on the

factor structure and how they can be used to facilitate the interpretation of the model. Then,

in Section 6, two examples will be given, a simulated example to evaluate parameter recovery

and an example using real data to exemplify the approach of using restrictions to produce an

interpretable factor solution. Finally, in the discussion section, some suggestions for further

research Will be given.

Bayesian Estimation of the 3PNO

In this paper, a Markov chain Monte Carlo procedure will be used to sample the

posterior distributions of interest, and the needed chains will be constructed using the Gibbs

sampler (Gelfand & Smiths, 1990). To implement the Gibbs sampler, the parameter vector

is divided in a number of components, and each successive component is sampled from its

conditional distribution given sampled values of all other components. This sampling scheme

is repeated until the sampled values produce stable posterior distributions. Albert (1992) applies

Gibbs sampling to estimate the parameters of the well known two-parameter normal ogive

model (Lawley, 1943, 1944, Lord, 1952, 1953a and 1953b). In this section, the procedure

will be generalized to the 3PNO, in the following section, this approach will be generalized

further to a multidimensional framework. In the 3PNO, the probability of a correct response of

a person i on an item j, denoted by Yi; = 1, can be written as

BEST COPY AVAILABLE 5



MCMC estimation MIRT 4

P (Yu = 0,, a3, f3, ) = -Y, + )Ciii3)

=
(1)

where yj is called the 'pseudo-guessing parameter', (I) denotes the standard normal cumulative

distribution function, and = ajOj f3 iith Oi the ability of person i, ai, the discrimination

parameter and /3i the difficulty parameter of the item j, respectively. In (1) the usual expression

for the 3PNO is rewritten to an expression that supports an interpretation of the model to be

used below. In this interpretation, there is a probability (I)(7iii) that the respondent knows the

item and gives a correct response with probability one, and a probability (1 4:D(riii)) that the

respondent does not know the item and guesses with -yi as the probability of a correct response.

So the probability of a correct response is a sum of a term 43.(Thi) and a term -yi (1 In

line with this interpretation, it will prove convenient to introduce a vector of binary variables

Wi such that

{
1 if person i knows the correct answer to item j
0 if person i doesn't know the correct answer to item j. (2)

So if W = 0, person i will guess the response to item j, if W = 1, person i will know the

right answer and will give a correct response. Consequently the conditional probability of Wi;

given Yii is given by

P (Wij = 1 lYi = 1, nij j) cx (13(nii)

P(Wii = 0IYj = 1) nip7j) cx 7j(1 (13(nij))

P(Wi; = 0 , j) = o

P(Wi; = 0 = = 1.

(3)

To implement the Gibbs sampler the data y, responses of n persons to k items, will be

augmented with latent data W = (W11, ..., Wnk)T . Further, following Albert (1992) the data are

also augmented with latent data. Z = (Z11, Znk)T , where the variables are independent

and normally distributed with mean Th., and a standard deviation equal to one. These variables

are related to W by Z > 0 if vvi, = 1 and Z < 0 if W1 = 0. This can, be written as

p(Zi; I Wii, ) a ck(Zi; ; 1) (I(Zii > = 1) + I(Zi; = 0)) (4)
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MCMC estimation WM' - 5where cb(Zii; i, 1) stands for the normal density with mean and standard deviation oneevaluated at Z. It is assumed that Oi is standard
normally distributed, the item parameters= (a jd 3 j)T , are given a prior pW = 113k > 0) to insure that the discriminationparameters are positive, and the pseudo-guessing parameter y has the conjugate noninformativeprior Beta(1, 1).

The aim of the procedure is to simulate samples from the joint posterior distribution of0, Z and W,given by

ID(, Z, W 13r) = W ; '7; 0 ,)/)(0)1)04-Y)

n k

C11{( n

0(0.6 fi0,1) (l(aig > 0)) fl p(-r)q=1
3=-1

(5)

where p(Wi; Iyii, ) is given by (3) and p(Zii 1Wi3, ) follows from (5).Although the distribution given by (5) has an intractable form, the fully conditionaldistributions of Z, 0, and -y are each tractable andeasy to simulate from. A draw from the fullconditional distribution can be obtained in five steps.
Step 1 Draw from the conditional

distribution of Zi; given all other variables. Using (5), thedistribution of zi; conditional on W, 0 and is given by

z N(7,1) truncated at the left by 0 if Wo = 1
i; y dist. {

N(ll) truncated at the right by 0 if W = 0.

Step 2 Draw from the conditional distribution of 0 given W, Z and From (4) and (5) itfollows that the fully conditional distribution of 0 entails a normal model for the regression ofZji gi on ci,,with Oi as a regression
coefficient with a normal prior with parameters pt = 0and a = 1. Therefor, the posterior of Oi is normal, that is,

'7 1O., is distributed N
11v +11a2 jv + 11(72))

2

where bi = E a (Z1 + )1 E a? and variance v=1/ Ei .

3 2 3

(6)

Step 3 Draw from the conditional distribution of given 0 and The variables can beviewed as coefficients of the regression of Zi = (Z1 , Zni)T on X = (0 1), with 1 the

7



MCMC estimation MIRT - 6

n dimensional column vector with elements -1. Therefore,

10, Zj, y is distributed N(4j, (XTX)-1)I(aj > 0),

where 43 = (XTX)-1XTZ3.

Step 4 Draw from the distribution of W conditional on all other variables given by (3).

(7)

Step 5 Sample from the conditional distribution of -yi. Let t3 be defined as ti = E I(Wo = 0)
, that is, tj is the number of persons who do not know the correct answer to item j and guess

the response. The probability of a correct response of person i on item j given Wij = 0
is P(yii = 11W23 = 0) = -yi . The number of correct responses obtained by guessing, say,

Si E yij, has a binomial distribution, Bin(ti, -yi). With the noninformative conjugate

Beta prior, the posterior distribution of -yi i

,yiI.w,y Beta(s3 + 1, t3 + 1). (8)

The procedure boils down to generating a number of parameter sequences iteratively

using these five steps. Convergence of the procedure can be evaluated by comparing the

between and within sequences variance (see, for instance, Gelman, Carlin, Stearn & Hall,

1995). Starting points of the sequences can be provided by the Bayes modal estimates of Bilog

(Zimowski, Muraki, Mislevy, & Bock, 1996).

Multidimensional normal ogive model

In a multidimensional normal ogive model with a guessing parameter (Q+2)PNO, thc

probability of a correct response, Yj = 1, on an item j is given by

P0723 = 1102, = + '72) (7/,), (9)

where Oi is a vector of Q ability parameters Oqi, q = 1, ...,Q, = aig, ...,a,Q, j)7.

is the vector of parameters of item j, and = EqQ ajgOqi OF Further, it is assumed that

all ability parameters Oi, i = 1, n, are independent and have identical multivariate normal

distributions with mean t and covariance matrix Et,.

To identify the model, restrictions have to be imposed on the parameters. One

approach, which, for instance, is used in the exploratory option of NOHARM (Fraser, 1988), is

8



MCMC estimation MM. - 7

setting the mean and the covariance matrix equal to zero and the identity matrix, respectively,

and introducing the constraints ajg = 0, for j = 1, ...,Q 1 and q = j + 1, ...,Q. An

alternative approach is considering the parameters of ability distribution as unknown estimands,

and to identify the model by setting Q item parameters 0i equal to zero and, for j = 1, ...,Q

and q = j + 1, ...,Q, imposing the restrictions cl = 1, if j = q, and ai, = 0, if j q.

Below it will be shown that these and the restrictions of the exploratory option of NOHARM

are equivalent. The reason for the latter identification is that it will be easier to generalize the

estimation procedure to a multiple group situation, where additional ability distributions are

considered, which are labeled with unique means and covariance matrices. But to keep the

presentation simple, it will first be assumed that all persons are associated with an identical

ability distribution; the generalization will be returned to later, together with a generalization to

incomplete test administration designs, where different persons respond to different items.

The procedure to be presented will be a generalization of the above procedure. The

definition of the variables, W = (W Wnk) and Z = (Z11, Znk) is as above, but with

an alternative definition of ?hi. It is assumed that the ability of person n, On., is Q-variate

normally distributed with mean and variance E, that is, O N(11,E0). Further, the prior

for the item parameters is given by 7rW = ri3k.=1 nqQ-1I(ce3 , > 0), that is, it is assumed

that the probability of a correct response is positively related to all latent abilities involved.

As above, the pseudo guessing parameter 7j will have a Beta prior. The joint posterior of

0, Z, W, y, p,, E0 is given by

P(C 0, Z; Ely) = p(Z,W 13' ; -r, 007)(0 I A, E0)P(A 1E0 )p(E9)23()73(-r)

n k

n fi p(zi; I14i2 ; lii ; 7, 7i)p(Oi Ee
i=1 j.1

1E0 )7)(E0)1)03(-Y)

where p(Zi; lW ; ni;) and p(Wi; li ; nip7;) are as defined in (4) and (5), with the proper

substitution of nii. Finally, p(p 1E0 ) and p(Ee) will be normal and inverse Wishart,

respectively.

Again, the procedure consists of simulating from fully conditional posteriors, in this

case, the fully posterior distributions of 0, Z, W ,-y, 1.1,,E0. Therefore, the procedure consists

of seven steps:

(1) Draw E0 conditional on 0.

(2) Draw IA conditional on E0 and 0.
BEST COPY AVAILABLE
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MCMC estimation MEM' - 8

(3) Draw W conditional on 0, and Y.

(4) Draw Z conditional on W, 0, and

(5) Draw 0 conditional on Z, E9, and 1.1.

(6) Draw conditional on Z and 0.

(7) Draw -y conditional on W and Y.

In this section, it will be assumed that there are appropriate initial estimates of 0, and

-y, how these initial estimates might be obtained will be discussed later. With this assumption,

the seven steps can be executed in the following order.

Step 1 The conjugate prior distribution for (p.,E0) is a product of a normal and an inverse-

Wishart distribution (see, for instance, Box & Tiao, 1973). Let Ao be the scale matrix and let

vo be the degrees of freedom for the prior of E0. Further, let tto be the prior mean and let ico be

the number of prior measurements on the E9 scale. The posterior is now also inverse-Wishart

distributed with parameters

/in

vn

tcon n
Kol-ri P-0 iso+n

= vo + n

tcn = + n

An = Ao + S + (0 tto)( P07,

where S is a matrix with elements S pq = E (0ip q) and -ep and -eq are the means
i=1

of the ability parameters of dimension p and q, respectively. The choice of a value for 110

will be returned to below. With respect to the choice of ko, vo and Ao, a noninformative prior

distribution is obtained if tco 0, vo 1 and 1Aol 0. This results in the multivariate

version of Jeffreys' prior density. The corresponding posterior distribution can be written as

1010 Inverse-Wishartn_1(S)

IL1E19,Y N(O,E19/71).
(10)

So using Jeffreys' prior E0 can be drawn from the Inverse-Wishart distribution.

Step 2 Draw p. from its full conditional distribution. Using Jeffreys' prior results in plEo,y

N(0,Eoln).

Step 3 Sampling W from its full conditional distribution proceeds as in Step 4 of the previous

section, with the proper substitution of mi.

1 0



MCMC estimation MIRT - 9

Step 4 Sampling Z from its full conditional distribution proceeds as in Step 1 of the previous

section, with the proper substitution of rhi.

Step 5 To draw from the conditional distribution of 0, an orthogonal standardized ability 0" is

defined. So the elements of 07 = (071, ...07Q)T have independent standard normal distributions.

Let L be the Cholesky decomposition of Ee, that is, E9 = LLT. Define the orthogonal ability

vector for person i, 07 = 14-1(0i-p). Now q can be written as

rlii =

h=1

Lhq0q°3 + p,q) I33

and in matrix notation as

= ALL-1(01 + 1.1.) 3= A(Ltri + IA) ,

with ij and fi vectors of length k, 0, 07 and vectors of length Q and AakxQ matrix with

elements ajg. The ability parameters 07 has a full posterior density given by

j=1

This can be written as

Zi + 3 Ap, +

where B = AL and ei is a vectors elements Eii, which are iid N(O, 1),It then follows that

07 is distributed N ((I+ E- 1 ) --1E -1()°,

with to`: the common least squares estimate K. = (BTB)iBT(zi Apt) and E =
(BTB)-l. Now 0i can be obtained by the transformation L07 + p, = 0,.

Step 6 Conditional on Z and 0, the posterior distributions of , G are independent with

11
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MCMC estimation MIRT - 10

.7q pi)11.1(ajg > 0) .
q=1

Define X = (Or, .., 0q, , -1) with Oq = (Big, ...eng)T and -1 is an n dimensional column

vector with elements -1. Conditional on 0, Zi = (Z13, ..., ZnI)T satisfies the linear model

where e 13, ez3, En3)T and the E,3 are iid N(0, 1). It then follows that

.i10,Z,y is distributed N(4i, (XTX)-l) H I(aig > 0) ,
q=1

where -4j = (XTX)-1XTZ3.

Step 7 Sampling -yj from its full conditional distribution proceeds as in Step 5 of the previous
section.

As above, these steps can be used to iteratively generate a number of parameter

sequences and convergence can be evaluated by comparing the between and within sequences
variance. Finding starting values for the procedure may be obtained from NOHARM or

TESTFACT, but an alternative approach will be sketched in the next section.

Above, it was already mentioned that there are several approaches to identify the
model. Consider the model with ability parameters 0, and identifying restrictions it = 0,
ajg = 1, if j q, and ail = 0, if j q, for j = 1, Q and q = j + 1, ...,Q, on one
hand, and the model with orthogonal ability parameters 07 and identifying restrictions = 0,
Eo = I, and cqg = 0, for j = 1, ...,Q 1 and q = j +1, ...,Q , on the other hand. Let A and
A° be the matrices of factor loadings for the former and latter parameterization, respectively.

Analogously to step 5, 0i can be transformed to 07 by 07 = L-10i, where L is the Cholesky

decomposition of Eo. Because L is lower triangular and A0i = AL07 = AV°, the restrictions
aq = 1, if j = q, and Etjq = 0, if j q, for j = 1, ...,Q and q = j + 1, Q, are transformed

into restrictions ceL = 0, for j = 1, Q 1 and q = j + 1, ...,Q . On the other hand,
defining the lower triangular matrix F as the first Q rows of A° and applying Oi = F07, results

in E9=FT-'F-1 and A = A'F', which in turn produces restrictions ctia = 1, if j = q, and

1 2



MCMC estimation MIRT - 11

ajg = 0, if j q, for j = 1,...,Q and q = j +1,...,Q. So the two parameterizations of the
model are easily interchanged.

As was already mentioned above, the procedure easily generalizes to the case of
multiple groups and incomplete designs. In the case of multiple groups, the mean and the
covariance matrix of the ability distribution of one of the groups can be set equal to zero
and the identity matrix, respectively. So for this group the first two steps are not performed,
these steps are only performed to generate means and covariance matrices for the remaining
groups. Restricting the mean and the covariance of one of the ability distributions suffices for
fixing the location and the scale of the latent continuum. However, this is not sufficient to
identify the model, because the model probabilities (1) are left unaltered under a permutation
of the ability dimensions. Therefore, additional constraints aj, 0,for j = 1, Q 1 and
q = j +1,...,Q are needed to completely identify the model. Steps 3 and 4 are performed per
item, so generalization t6 multiple groups and incomplete designs only entails that-the variables
Wij and Zij are performed in the cases where person i responded to item j. Step 5 is performed
per person, so here both the group to which the person belongs and the items made should be
taken into account. Finally, the steps 6 and 7 for generating item parameters should take into
account the persons actually confronted with the items.

Subscale Factor Analysis

In the previous section it was argued that the model can be identified by settihg a mean
and a covariance matrix equal to zero and the identity matrix, respectively, and introducing the
constraints ajq = 0,for j = 1, ...,Q 1 and q = j +1, ...,Q. These are the constraints also used
in the exploratory option of NOHARM (Fraser, 1988). In this approach, the model is identified
by assuming that the responses on the first item are uniquely determined by the first ability
dimension, the responses on the second items are uniquely determined by a mixture of the first
and the second ability dimension, and so forth. In general, these identification restriction will be
of little help in providing an interpretation for the ability dimensions. Therefore, in a exploratory
factor analysis, the factor solution is usually visually or analytically rotated. Often, the rotation
scheme is devised to approximate Thurstone's simple structure criterium (Thurstone, 1947),
where the factor loadings are split into two groups, the elements of the one tending to zero
and the elements of the other toward unity. The approach suggested in this section has much
in common with this approach: the idea is to identify the dimensions with subscales of items
loading on one dimension only. The idea is to either identify these S < Q subscales on a priori

13
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grounds, or to identify these subscales using an iterative search based on fitting a unidimensional

IRT model by discarding items from the scale. In the latter case, there are two reasons for

choosing the Rasch model as the unidimensional IRT model. Firstly, the theory evaluation of

fit to the Rasch model is well founded and the asymptotic distributions of the many fit statistics

are well known (Andersen, 1973, Martin Löf, 1973, 1974, Kelderman, 1984, 1989, Molenaar,

1983, Glas, 1988, Glas & Ntrhelst, 1989, 1995). However, this argument is not completely

overwhelming, because procedures for evaluation of model fit are also available in the general

IVIML framework (Yen, 1981, 1984, Mislevy & Bock, 1990, Reiser, 1996, Glas, 1998) and

the framework of non-parametric IRT (Rosenbaum, 1984, Holland & Rosenbaum, 1986, Stout,

1987, 1990 and Junker, 1991). A second and more important reason relates to the intuitive

concept of a measurement scale: a continuum where the order of the outcomes of a measurement

does not depend on the objects positions on the scale. Translated to a test with dichtomous items:

the probabilities of a correct response on items referring to a scale is independent of the position

on the scale. This intuitive requirement is formalized by Rasch (1967) and leads to the Rasch

model (Fischer, 1995).

These considerations lead to the following heuristic:

(1) Set counter s = 1

(2) Estimate the parameters of the items in the target set;

(3) Compute fit statistics and remove poorly fitting items from the target set to the set "removed

items";

(4) If the overall model fit is unacceptable, goto 2;

(5) If s = S then stop else "removed items" becomes the target set, s = s + 1 and goto 2.

In the first iteration of the selection process (s = 1), the target distribution can

be set to the complete test, and the inner loop (steps (2)-(4)) is repeated until an acceptable

unidimensional subscale is found. In the neXt iteration (s = 2), the nest subscale is selected

from the remaining items, and so forth, until s = S. Detailing this procedure further, the item

parameters estimates of step (2) can, for instance, be computed using conditional maximum

likelihood (see, for instance, Molenaar, 1995), which has the advantage that these estimates

do not depend on an assumption with respect to the ability distribution. These estimates can

be computed using RSP (Glas & Ellis, 1993), which program also computes the so-called R1

and R0 statistics (Glas, 1988) that can be used in step (3) and (4). The R1-test can be used for

evaluation of the form of the ICC's and the R2-test for evaluation of local independence.

After identification of S sets of scaled items, there will usually be a set of remaining

14
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items that may load an all ability dimensions. Of course, the number of items in this set depends

on the size of the critical regions used in step (3) and (4). Next, restrictions will be imposed on

the matrix of factor loadings A to reflect the structure of the subscales found, that is,' if item j

belongs to subscale q, ajq = 1, and ajq, = 0, for q' = 1, ...,Q, q' q. Finally the remaining

dimensions q = S + 1...,Q are identified using ayq = 1,and ayq, = 0, for some item j' not

belonging to a subscale, and q' =1,...,Q, q' q.

Examples

In this section, two studies of the performance of the MCMC method will be presented,

one for the case of the 3PNO and one for the case of the (3+2)PNO. For the first study, data

were simulated using the 3PNO parameter values given in Table 1. These parameters are a

subset of the items parameters of a real, and therefore realistic data set (ACT, 1997). Using

these parameters, ability parameters for n = 1000 simulees were drawn from a standard normal

ability distribution and for every simulee a response patterns was generated using the 3PNO.

Next, the items parameters were estimated using the MCMC procedure described above and

Bilog-MG. In both procedures the same Beta(a, b) prior on -y was used. The values for a and

b were set equal to 20 '1'* , true + 1 and 20 * (1 , + 1, respectively, the values -true, ytrue are

listed in Table 1. Further, in the Bilog analysis a log normal (0,0.5) prior on a was used. The

MCMC procedure had a run length of 30000 iterations. The starting values used in the MCMC

procedure were, ai = 1, 0i = 0, -yi = -yi,true for all items i, and Oi = 0 for all persons j. In a real

estimation situation those starting values can be improved by the use of, for example, Bilog-

MG estimated parameter values. From examining the plots of sampled parameter values, it was

concluded that a bum-in period of 1000 iterations was sufficient. These first 1000 iterations

were discarded.

Insert Table 1 about here

The mean of the generated posterior distribution and posterior standard deviation of

the parameters issued from the MCMC procedure are given in Table 2. In Table 3, the MML

estimated parameter values and their standard errors issued from Bilog-MG are given. The /3

parameters in Table 3 are transformed /3 = IlitObilog) because in Bilog-MG the parameterization

(1)(a(O 0)) is used. Comparing the Tables 1, 2 and 3, it can be seen that parameter recovery

of the MCMC and Bilog-MG procedures are comparable.

15
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Insert Table 2 and Table 3 about here

To evaluate the performance of the MCMC
procedure in combination with the 3-

dimensional (32)PNO model, 2000 response patterns were simulated with the item parameters
given in Table 4, and a multivariate normal ability

distribution with z = 0 and E = I. Note that
25 of the 28 items only load on a single dimension. The items loading on the same dimension
form unidimensional subscales. Again, the MCMC procedure was performed with a run length
of 30000. As with the 3PNO model, from examination of the plots of sampled parameter values
it could be seen that a burn-in period of length 1000 was sufficient. In the MCMC procedure
a is generally

restricted to imply a > 0 for all items. In the current run this prior was dropped
for ai, with i 3. Above it was shown that these parameters play a role in the change between
a model

representation with and without covariance. A restriction on the values of ai, i 3
would imply an undesirable restriction on the covariance.

Because no additional priors were
used on a and an informative prior on 7 proved necessary to support convergence of the
procedure. Therefore, a Beta(a, b) prior with a = 1000*7 rue+ 1 and b = 1000* (1 l'true)
was used. The true parameter values -ytrue are listed in Table 4. Further, the starting values for
the item parameters were azq = 1/i for i Q and aiq = 11Q

otherwise, and Oi = 0, and
=

starting values for the person parameters were 0 = 0.

Insert Table 4 to 8 about here

In Table 5 the results of the MCMC procedure are summarized. For each item the mean posterior
and posterior standard error are presented.

In Table 6 the result are given of the same MCMC
procedure as described above only now the

parameterization with a covariance matrix is chosen
and the prior a > 0 is dropped.

Those modificationsenable comparison of the results with the
results ofNOHARM (Table 7) and TESTFACT (Table 8). Both

NOHARM and TESTFACT use
fixed values of -y. the results of TESTFACT are transformed to make them

comparable with the
results in Table 6 and Table 7.From inspection of these tables it can be seen that recovery of the
factor structure is quite good.
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Table 1
True item parameter values

ITEM a 0
1 0.642 -1.619 0.19
2 0.806 -1.533 0.15
3 0.956 -1.292 0.11
4 0.972 -1.061 0.14
5 1.045 -0.245 0.37
6 0.834 -0.264 0.14
7 0.614 0.023 0.17
8 0.796 0.213 0.10
9 1.171 -0.669 0.19
10 1.514 0.480 0.31
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Table 2
Recovery of 3PNO parameters by MCMC

ITEM a 7 a(a) cr(0) Gr(-y)
1 0.564 -1.607 0.220 0.111 0.114 0.087
2 0.818 -1.500 0.187 0.125 0.119 0.081
3 0.928 -1.185 0.161 0.142 0.112 0.079
4 0.826 -0.829 0.173 0.125 0.111 0.080
5 0.927 -0.399 0.325 0.202 0.166 0.079
6 0.975 -0.369 0.113 0.130 0.095 0.049
7 0.629 0.038 0.214 0.151 0.200 0.082
8 1.374 0.682 0.221 0.444 0.332 0.048
9 1.093 -0.691 0.160 0.173 0.107 0.061
10 1.027 0.273 0.279 0.234 0.198 0.057
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Table 3
parameters by BILOG-MG

ITEM a
'Y c r (a) r(0) a(y)

1 0.653 -1.736 0.191 0.113 0.165 0.0882 0.865 -1.600 0.150 0.125 0.161 0.0803 0.919 -1.249 0.119 0.122 0.143 0.0744 0.809 -0.869 0.145 0.108 0.121 0.0775 0.879 -0.445 0.311 0.152 0.172 0.0826 0.930 -0.416 0.084 0.116 0.099 0.0477 0.582 -0.024 0.195 0.106 0.088 0.0818 1.139 0.499 0.199 0.279 0.150 0.0499 1.029 -0.730 0.131 0.135 0.140 0.06110 0.942 0.203 0.267 0.209 0.150 0.063
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Table 4

True item parameters (3+2)PNO
ITEM' a a 2 as j3

"Y1 1.000 .000 .000 .000 0.192 .000 1.000 .000 .000 0.153 .000 .000 1.000 .000 0.114 1.000 .000 .000 .500 0.145 1.000 .000 .000 1.000 0.376 1.000 .000 .000 -1.000 0.147 1.000 .000 .000 -1.000 0.178 1.000 .000 .000 .500 0.109 1.000 .000 .000 1.000 0.1910 1.000 .000 .000 -1.000 0.3111 1.000 .000 .000 -1.000 0.20P .000 1.000 .000 .500 0.2013 .000 1.000 .000 .250 0.2014 .000 1.000 .000 -.250 0.2015 .000 1.000 .000 -.500 0.2016 .000 1.000 .000 .500 0.2017 .000 1.000 .000 .250 0.2018 .000 1.000 .000 -.250 0.2019 .000 1.000 .000 -.500 0.2020 .000 .000 1.000 1.000 0.2021 .000 .000 1.000 .000 0.2022 .000 .000 1.000 1.000 0.2023 .000 .000 1.000 1.000 0.2024 .000 .000 1.000 .000 0.2025 .000 .000 1.000 1.000 0.2026 .200 .800 .000 .000 0.2027 .200 .200 .600 1.000 0.2028 .800 .400 .200 -1.000 0.20
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Table 5
Recovery of 3PNO parameters by MCMC procedure with prior on a

ITEM al a2 aa i3 y a(ai) 0-(a2) a(a3) a(13) 0(7)
1 1.148 0.000 0.000 0.023 0188 0.109 0.059 0.012
2 0.138 0.927 0.000 -0.011 0.150 0.050 0.074 0.049 0.011
3 -0.027 .0.046 1.007 0.046 0.111 0.053 0.051 0.090 0.050 0.010
4 0.919 0.034 0.046 0.504 0.144 0.093 0.027 0.035 0.068 0.011
5 0.854 0.088 0.110 0.923 0.378 0.162 0.061 0.072 0.165 0.015
6 0.881 0.048 0.029 -0.923 0.142 0.079 0.034 0.025 0.055 0.011
7 1.061 0.040 0.062 -1.072 0.172 0.098 0.032 0.043 0.067 0.012
8 0.989 0.066 0.028 0.463 0.105 0.098 0.042 0.024 0.066 0.010
9 1.272 0.075 0.129 1.258 0.190 0.213 0.053 0.074 0.197 0.011
10 0.982 0.031 0.057 -1.067 0.313 0.110 0.027 0.042 0.073 0.015
11 0.977 0.047 0.102 -1.139 0.201 0.093 0.036 0.055 0.068 0.013

.12 0.034 1.083 0.132 0.652 0.202 0.029 0.109 0.064 0.086 0.012
13 0.040 1.015 0.102 0.294 0.202 0.032 0.096 0.055 0.066 0.013
14 0.043 1.034 0.035 -0.270 0.203 0.033 0.088 0.029 0.051 0.013
15 0.078 0.943 0.050 -0.477 0.201 0.045 0.080 0.037 0.051 0.01316 0.094 1.088 0.130 0.556 0.203 0.053 0.114 0.062 0.086 0.012
17 0.038 1.089 0.180 0.334 0.205 6.031 0.106 0.065 0.073 0.013
18 0.061 0.984 0.076 -0.226 0.203 0.041 0.081 0.047 0.052 0.013
19 0.035 1.020 0.028 -0.459 0.202 0.028 0.085 0.024 0.051 0.013
20 0.062 0.102 1.025 1.041 0.206 0.047 0.062 0.141 0.139 0.013
21 0.078 0.054 1.330 0.039 0.203 0.051 0.041 0.143 0.068 0.013
22 0.039 0.062 1.135 1.146 0.212 0.035 0.048 0.209 0.208 0.014
23 0.056 0.086 1.207 1.221 0.209 0.046 0.059 0.207 0.203 0.01324 0.105 0.040 1.032 0.009 0.204 0.053 0.032 0.102 0.058 0.013
25 0.070 0.061 1.356 1.355 0.213 0.055 0.049 0.286 0.276 0.013
26 0.253 0.782 0.040 -0.015 0.202 0.054 0.071 0.031 0.051 0.013
27 0.096 0.182 0.607 1.069 0.200 0.057 0.068 0.089 0.102 0.012
28 0.716 0.391 0.201 -0.933 0.201 0.069 0.057 0.056 0.053 0.013

2 4



Recovery of 3P

MCMC estimation MIRT - 23Table 6NO parameters by MCMC procedure without prior on a
ITEM al a2

'Y 0(a1) cf(a2) a(a3) 43) a(7)

1 1.000 0.000 0.000 0.004' 0.184
0.052 0.012

2 0.000 1.000 0.000 -0.006 0.152
0.049 0.011

3 0.000 0.000 1.000 0.045 0.111
0.049 0.010

4 0.923 0.025 -0.042 0.506 0.144 0.100 0.064 0.067 0.068 0.011

5 0.890 0.104 0.056 0.956 0.380 0.186 0.095 0.098 0.182 0.015

6 0.896 0.064 -0.093 -0.930 0.142 0.084 0.062 0.064 0.054 0.011

7 1.071 0.043 -0.017 -1.071 0.172 0.105 0.070 0.073 0.068 0.012

8 0.991 0.103 -0.098 0.465 0.105 0.105 0.065 0.067 0.064 0.010

9 1.310 0.104 0.066 1.287 0.190 0.238 0.096 0.099 0.210 0.012

10 1.020 -0.010 -0.035 -1.079 0.313 0.119 0.072 0.077 0.074 0.015

11 0.985 0.052 0.046 -1.138 0.201 0.098 0.069 0.072 0.068 0.012

12 -0.182 1.137 0.092 0.673 0.204 0.082 0.134 0.080 0.099 0.012

13 -0.130 1.036 0.070 0.294 0.202 0.069 0.100 0.071 0.066 0.012

14 -0.124 1.059 -0.059 -0.271 0.202 0.067 0.095 0.070 0.052 0.013

15 -0.044 0.967 -0.009 -0.474 0.202 0.062 0.084 0.066 0.050 0.013

16 -0.047 1.113 0.096 0.552 0.203 0.074 0.120 0.078 0.084 0.012

17 -0.156 1.111 0.152 0.333 0.205 0.073 0.119 0.078 0.073 0.013

18 -0.076 1.018 0.034 -0.224 0.203 0.064 0.092 0.069 0.053 0.013

19 -0.145 1.058 -0.087 -0.458 0.203 0.069 0.095 0.071 0.052 0.013

20 0.024 0.052 1.030 1.042 0.20.6 0.080 0.084 0.151 0.144 0.013

21 0.082 -0.018 1.341 0.037 0.203 0.079 0.081 0.154 0.069 0.013

22 -0.052 -0.041 1.139 1.132 0.211 0.083 0.086 0.166 0.159 0.012

23 -0.004 0.007 1.226 1.228 0.209 0.094 0.099 0.204 0.198 0.013

24 0.125 -0.037 1.038 0.010 0.204 0.067 0.069 0.109 0.059 0.013

25 0.016 -0.062 1.320 1.310 0.212 0.098 0.102 0.193 0.183 0.012

26 0.159 0.822 -0.033 -0.014 0.202 0.061 0.077 0.064 0.051 0.013

27 0.066 0.166 0.599 1.062 0.200 0.071 0.074 0.091 0.104 0.012

28 0.692 0.433 0.159 -0.938 0.201 0.075 0.066 0.064 0.053 0.013
Covariance

Standard error covariance0.975
0.0560.016 0.938
0.036 0.054-0.005 0.017 0.968
0.036 0.036 0.058
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Table 7
NOHARM estimates (3+2)PNO

ITEM ci 2 a3
1 1.000 0.000 0.000 -0.038
2 0.000 1.000 0.000 0.014
3 0.000 0.000 1.000 -0.042
4 0.686 0.007 -0.014 -0.480
5 0.577 0.075 -0.006 -0.801
6 0.671 0.042 -0.056 0.922
7 0.783 0.015 0.007 1.049
8 0.734 0.064 -0.081 -0.436
9 0.958 0.021 0.130 -1.230
10 0.686 -0.040 0.036 1.025
11 0.765 0.010 0.081 1.143
12 -0.117 1.128 0.113 -0.634
13 -0.073 1.068 0.023 -0.284
14 -0.114 1.070 -0.061 0.280
15 -0.042 0.978 -0.032 0.478
16 -0.037 1.108 0.066 -0.526
17 -0.096 1.082 0.125 -0.297
18 -0.069 1.033 0.032 0.237
19 -0.107 1.055 -0.085 0.463
20 0.032 0.019 0.956 -0.962
21 0.072 -0.070 1.293 -0.020
22 -0.040 -0.056 0.922 -0.942
23 -0.033 0.020 1.061 -1.066
24 0.098 -0.062 0.968 0.007
15 0.014 -0.024 1.022 -1.043
26 0.127 0.818 -0.019 0.024
27 0.065 0.161 0.645 -1.081
28 0.498 0.389 0.195 0.918

Covari ance
1.638
0.062 0.886

-0.070 0.042 0.995
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Table 8
TESTFACT estimates (3+2)PNO

ITEM a a2 a3
1 1.000 0.000 0.000 0.013
2 0.000 1.000 0.000 -0.013
3 0.000 0.000 1.000 0.046
4 0.782 -0.004 -0.041 0.467
5 0.678 0.082 0.022 0.809
6 0.760 0.029 -0.083 -0.928
7 0.883 -0.005 -0.021 -1.051
8 0.840 0.071 -0.106 0.429
9 1.035 0.033 0.073 1.158
10 0.880 -0.060 -0.027 -1.086
11 0.818 -0.005 0.042 -1.116
12 -0.181 1.203 0.997 0.651
13 -0.131 1.084 0.040 0.283
14 -0.132 1.099 -0.069 -0.271
15 -0.066 1.014 -0.010 -0.470
16 -0.061 1.146 0.112 0.529
17 -0.156 1.130 0.142 0.307
18 -0.085 1.024 0.023 -0.225
19 -0.158 1.097 -0.090 -0.455
20 0.037 0.063 1.008 0.991
21 0.095 -0.032 1.251 0.022
22 -0.033 -0.069 1.047 1.011
23 0.004 0.016 1.031 1.035
24 0.135 -0.053 0.972 -0.004
25 0.046 -0.061 1.060 1.066
26 0.109 0.836 -0.041 -0.025
27 0.076 0.142 0.587 1.039
28 0.572 0.409 0.155 -0.924

Covariance
1.175
0.081 0.754

-0.032 0.037 0.890
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